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The Circular Homogeneous-Ferrite Microwave
Cirulator—An Asypmtotic Green’s Function

and Impedance Analysis
Jeffrey L. Young, Senior Member, IEEE, and James W. Sterbentz

Abstract—A detailed analysis of the circular, homogeneous
ferrite microwave circulator is provided. Particular emphasis is on
the circulator’s Green’s function and the impact of the asymptotic
term within the Green’s function on convergence, data quality,
and design methodology. The asymptotic term is shown to be
logarithmic, which suggests that the Green’s function is weakly
singular when the source and observation points occupy the same
location. With the Green’s function properly understood, two
techniques—one analytical and one numerical—are then offered
to integrate that function in order to obtain -parameter data
and, subsequently, -parameter data. Data are provided to show
rapid convergence of all parameters of interest. A small coupling
angle approximation is then given for the -parameters and, from
that approximation, a first-order design equation is obtained that
relates the coupling angle to circulator radius. A circulator design
example is presented and compared to a design associated with
the Wu and Rosenbaum method; the comparison substantiates
the small coupling angle approximation and design formula.

Index Terms—Asymptotic analysis, circulator, ferrite, Green’s
function.

I. INTRODUCTION

THERE EXISTS considerable interest in the design, anal-
ysis, and modeling of ferrite devices within the microwave

circuits community [1]. This interest is spawned, in part, from
the role that ferrite devices have in directing energy to spe-
cific destinations within a circuit (i.e., the circulator and iso-
lator), shifting the phase of an electromagnetic wave, or fil-
tering the frequency spectrum of an electromagnetic signal. In
the past, these devices were constructed using bulky external
magnets to maintain material magnetization; recently, with the
advent of new ferrite materials and thick-film processes, inte-
grated self-biased ferrites are now possible [2], [3].

In this paper, we are interested in the small-signal analysis of
the cylindrical circulator, as initially considered by Bosma [4]
and by Davies and Cohen [5]. Their analysis is based upon the
assumption that the circulator can be modeled as a closed cylin-
drical cavity whose surfaces are a mixture of perfect magnetic
conductors (PMCs) and perfect electric conductors (PECs); the
cavity is assumed to be filled with a homogeneous axially bi-
ased anisotropic ferrite. When the cavity is excited by a uniform
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axially directed electric current sheet that exists along the ver-
tical side of the cavity, the spatial variation in the electromag-
netic fields is two-dimensional. The advantage of this approach
is found in the simple construction of a scalar integral equation
that relates axial electric intensity to azimuthal magnetic inten-
sity.

This integral equation has been the subject of many papers
and has been used to: 1) determine narrow-band design equa-
tions for the circulator [4]; 2) describe the circulator’s physical
operation in terms of two counter-opposing azimuthal modes
[6]; 3) provide a design procedure for wide-band operation [7];
4) characterize the behavior of the circulator for negative perme-
ability [8]; and 5) analyze the various loss mechanisms within
the circulator [9]–[11]. In each of these cases, knowledge of
Bosma’s original two-dimensional Green’s function, which is
the kernel of the integral equation, is required. Although the
Bosma Green’s function, as it shall be called, has been correctly
derived in terms of an infinite series of azimuthal modes, the sin-
gularity and asymptotic nature of this Green’s function has not
been adequately investigated. In this paper, such an investiga-
tion is provided.

By understanding the asymptotic and singular nature of the
Bosma Green’s function, we demonstrate how an accurate
evaluation of the circulator’s - and -parameters can be made.
Specifically, the -parameters, which are obtained by inte-
grating the Green’s function over some portion of the sidewall
of the cavity, are cast in terms of a rapidly converging series
and an asymptotic term. The asymptotic term can be evaluated
by using Taylor series techniques or by using Gauss-quadrature
numerical methods. If Taylor analysis is employed, we show
how the asymptotic impedances, particularly the asymptotic
self-impedance, can be utilized to assist in the design of the
circulator in order to achieve perfect circulation. To this end,
a simple first-order design formula that relates coupling angle
to disk radius is derived. To validate the formula, a design
example is provided and -parameter data for the same are
plotted. The data clearly manifest the match, isolation, and
insertion-loss conditions that are expected of a circulator.

It has been noted in the literature that Bosma’s model ex-
cludes the important effect of the demagnetizing field, which
creates a ferrite that is highly inhomogeneous in the radial di-
rection [12]. Since the circular ferrite is typically azimuthally
homogeneous, however, it is possible to model the inhomoge-
neous effect by creating a radially stratified ferrite that is a dis-
cretization of the continuous ferrite and to develop a recursive
Green’s function for the same [13]–[15]. It is surmised that the
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analysis provided herein could be applied to this Green’s func-
tion as well; the ease or difficulty of making such an application
is the subject of future work.

II. FORMULATION

The approach considered herein, as introduced by Bosma [4],
is to assume that the circulator can be modeled as a closed cylin-
drical cavity that is homogeneously filled with an axially biased
ferrite material. (The axial direction corresponds to the Carte-
sian -axis.) The top and bottom surfaces are considered to be
PECs; the sidewall surfaces are assumed to be PMCs. The ra-
dius and height of the cavity are and , respectively. If the
cavity is excited by a uniform line source that extends from the
bottom surface to the top surface, field variations in the axial di-
rection are absent, which implies that the electromagnetic fields
are two-dimensional in the radial and azimuthal directions (i.e.,

and , respectively).
Per Bosma, a Green’s function is sought that relates

the small-signal electric intensity to the small-signal mag-
netic intensity on the walls of the cavity (i.e., ) in
terms of the following integral equation:

(1)

The derivation of the Green’s function has been pro-
vided in several sources (e.g., [4]) and, hence, it suffices to
simply state its form. For purposes of future mathematical ma-
nipulations, that form is given in terms of modified Bessel func-
tions per Neidert and Phillips [9] as follows:

(2)

where

(3)

and

(4)

Here, is the modified Bessel function of the first kind of
argument and is its derivative with respect to . The
secondary parameters and are the wave impedance and
wavenumber of the ferrite, respectively, and
where , where . Here,

and are elements of the Polder matrix [16]. To assure de-
caying solutions and passive material status, regardless of the
sign of , the branch cuts are chosen such that
and . By expressing the branch cut of as such,
we avoid the need to express in terms of , which
is the Bessel function of the first kind.

To understand the convergence properties of either or ,
note that, for large

(5)

per the asymptotic theory of Bessel functions [17]. As expected,
the Green’s function converges at the rate of . To improve
convergence, the asymptotic term is removed from the summa-
tion and separately summed in closed form [18]. Using the result
from Wheelon [19] that

(6)

we replace (2) with

(7)

where

(8)

and

(9)

Here

(10)

and

(11)

Finally, is the asymptotic term associated with
and is given by

(12)
As expected, the singular nature of the Green’s function is

manifested in , which is implicitly present within the
original Bosma Green’s function of (2), i.e., the summations
within (2) become logarithmically divergent whenever the
source and observation points occupy the same location. (This
effect was also observed by Schloemann and Blight [8] for the
special case when .) However, even if and are not
the same, but are close to each other, the implicit logarithmic
nature of (2) leads to series that are technically convergent, but
computationally slow to converge. This slowness-to-converge
attribute is due to the convergence rate of and .
However, by subtracting the asymptotic terms from the series,
as was done in (8) and (9), we create series that converge at
the rate of . For computational purposes, this type of
convergence is sufficiently rapid and, as the numerical results
reveal, extremely tight convergence can be achieved in 5-15
terms.
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Fig. 1. Port definitions for the cavity.

With the Green’s function of (7) so developed, it now be-
hooves us to consider the impedance effects of the cavity. We
do so by regarding the cavity as a three-port device, whose ports
are geometrically located per the diagram of Fig. 1. The ports
are regarded as locations where either current sources are im-
pressed or where open circuit voltage calculations are made. The
open-circuit nature of the ports follows directly from the PMC
boundary condition associated with the cavity. The defining in-
tegral equation of (1) reveals that is a transimpedance
function that relates the impressed current sources on the az-
imuthal wall of the cavity (i.e., ) to the voltage response on
the same (i.e., ). Due to the assumed small-signal linearity of
the ferrite, it follows that and are related to each other at
the ports by means of the impedance parameters , e.g.,

(13)

Likewise

(14)

and

(15)

where is given by (7). Similar definitions can be pro-
vided for the remaining impedance parameters. However, such
a provision is not necessary since the symmetry of the Green’s
function leads to the following conclusions: ,

, and .
The integration of (13)–(15) is trivial, except for the loga-

rithmic terms associated with , which are integrable,
even though they are singular at . The integration of

is possible in one of two ways. The first way is to inte-
grate it numerically using Gauss-quadrature techniques that em-
ploy a mixture of polynomials and natural logarithms as basis
functions [20]. This is numerically easy to do, but provides no
impedance information associated with . The second way is

to approximate the integral using small argument approxima-
tions, as provided in the Appendix. From the information lo-
cated in the Appendix

(16)

where

(17)

which is the asymptotic term. Expressions for and are
given by (39) of the Appendix. Likewise,

(18)

and

(19)

Here

(20)

and

(21)

Expressions for , , , and are also provided in
the Appendix.

To obtain useful design information, we now explore the
small coupling angle case. Let be the number of terms re-
quired to achieve adequate convergence. Moreover, if ,
we may approximate (16), (18), and (19) with the following:

(22)

(23)
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and

(24)

These equations suggest that the term in (16), (18),
and (19) does not accelerate convergence when is small, as it
might first appear upon casual inspection. (In the case of Wu and
Rosenbaum [7], the term in (9) also contributes
nothing to the initial convergence rate for small coupling angles
since . As for the asymptotic terms, the
results from (17), (20), and (21) and the small coupling angle
results from the Appendix suggest that

(25)

(26)

(27)

Through these small coupling angle approximations, the impact
of on the open-circuit impedances is clearly seen: all open-
circuit impedances are approximately proportional to , except
for , which is proportional to .

The classical design methodology of a circulator has been
articulated by Wu and Rosenbaum [7]. We now consider the
special case of that design when the coupling angle is small.
With this in mind and for purposes of future manipulations, let

, where

(28)
From (22), (25), and (28), it follows that

(29)

and

(30)

Here, and are functions of and and are purely
real when . Next consider the , , , and notation

that is similar (but not identical) to Wu and Rosenbaum [7]. By
letting and , where

, we find from the above equations that

(31)

and

(32)

As for and , let and ,
where . To satisfy the circula-
tion condition, it follows from Wu and Rosenbaum
that and

[7]. It is important to rec-
ognize at this point that the right-hand sides of the two previous
equations are independent of the coupling angle (under
the small angle approximation). Obversely, the function is
inversely proportional to the coupling angle and is dependent
on in the logarithmic sense. Hence, from (31) and (32), it
follows that

(33)

The previous equation shows the strong dependency of and
its asymptotic term on the coupling angle. The equation also
allows for a quick first-order design of a circulator and is much
easier to implement than the set of equations provided in [7].

III. NUMERICAL RESULTS

Numerical examples pertaining to the calculation of the
Green’s function and the -parameters are first
provided in this section. To establish a meaningful comparison
to past research, the parametric values used in this section
are taken from Wu and Rosenbaum [7]: ,

, and ; the center frequency of operation is
chosen to be 10.0 GHz.

The convergence behavior of the original and asymptotically
modified Green’s functions is compared when cm
and for the following two cases: r (Fig. 2) and

r (Fig. 3). In each of these figures, (2) and (7)
are plotted as a function of the azimuthal model index . As
expected, the asymptotically modified Green’s function rapidly
converges within three to ten terms, regardless of the value of

. Obversely, the Bosma Green’s function fails to converge
after 100 terms in Fig. 2 and exhibits damped-sinusoidal oscil-
lations about the final solution in Fig. 3 [14]. It is clear from
these plots that computations based upon the expression of (2)
will be in error if only a few terms are used in the summation.

With the convergence properties of the Green’s function un-
derstood, we now turn attention to the evaluation of the -pa-
rameters, which are derived by integrating the Green’s function
per (13)–(15). This can be accomplished in one of two ways.
The first method is by means of analytical approximations that
result in the expressions of (16)–(21); the second is by using
a Gauss-quadrature technique that accounts for the logarithmic
singularity in the integrand, as described by [20]. The results
from both of these methods are compared against each other to
determine consistency and veracity. For example, consider the
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Fig. 2. Convergence data of G(�; � ) as a function of n, as derived from (2)
and (7) when � � � = 0:01 r.

Fig. 3. Convergence data of G(�; � ) as a function of n, as derived from (2)
and (7) when � � � = 1:0 r.

results of Fig. 4, which shows the magnitude of as a func-
tion of modal index when r. It is clear from this
figure that close correlation between methods is achieved when

exceeds 20. This close correlation of data provides confidence
in the closed-form -parameter expressions of (16)–(21) and in
the approximations used to derive the same.

To conclude this section, an illustrative design example using
the small coupling angle formula of (33) is offered, where it is
assumed that is known at the center frequency of 10 GHz;
a constant port impedance of 50 is assumed. (The value of

is deduced from values of and given at the begin-
ning of this section.) Numerical solutions associated with (33)
are provided in Table I. Consider the third solution of Table I
(i.e., cm and r), which corresponds to
a reasonably small coupling angle. Using no approximations,
other than those associated with numerical integration, we cal-
culated the -parameters for this solution; the data are shown
in Fig. 5. Also shown in this figure is associated with the
exact solution of the Wu and Rosenbaum procedure, which is

cm and r. Note, in particular, the close
agreement between the two data sets. Although the exact

Fig. 4. Plots of Z as a function when  = 0:3 r. Comparison is made
between data sets associated with analytical approximations and direct
numerical integration.

TABLE I
CIRCULATOR DESIGN VALUES

Fig. 5. S , S , and S data sets when a = 0:673 cm and  = 0:0729 r,
S (Wu) data set for a = :670 r and  = 0:0678 r.

solution shows a deeper resonance (i.e., 44 versus 28 dB), both
show resonance at 10 GHz.

IV. CONCLUDING REMARKS

In this paper, a comprehensive analysis of the Bosma Green’s
function has been provided. That analysis has revealed both
the convergence rate and singular nature of the Bosma Green’s
function. With such information, we have developed accurate
representations of the circulator’s performance metrics, such as
the impedance and scattering parameters, and have deduced a
simple first-order design formula. Unlike the design procedure
of Wu and Rosenbaum [7], this design formula is simple to im-
plement into numerical code and computes rapidly. It is sur-
mised that the design formula of (33) contains important design
information with respect to wide-band operation.
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APPENDIX

Consider the following integral function:

(34)

where for purposes of the -parameter calculations

port 1

port 2

port 3.

(35)

By definition, , , and
. Consider first the case when . By

means of the equation , we may replace (34) with

(36)

By factoring the term from the argument of the loga-
rithmic function and by performing some simple integrations,
we obtain

(37)

The next step is to recognize that, for typical values of ,
. Hence,

(38)

Each of the aforementioned integrals can be evaluated using
simple techniques of calculus. The final result of those integra-
tions is

(39)

By means of similar mathematical operations, it can be shown
that .

Even for large coupling angles (i.e., ), we may re-
place the logarithmic terms with their small argument form (i.e.,

. Upon doing so, we find that

(40)

Further manipulation yields

(41)

which would have been the expected result had only the approx-
imation in (37) been used.

For the other two cases (i.e., and ), a sim-
ilar procedure to that above can be employed to obtain inte-
gral expressions for , , , and . However, given
that the integrands of these integrals are not singular within
the bounds of the integration limits, but are rather smooth and
slowly varying, it behooves us to approximate these integrands
using trapezoidal functions [17]. Doing so, we obtain

(42)

If the coupling angle is small such that then

(43)

From this expression, it follows that

(44)

and

(45)
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